САЙТ ХАРЬКОВСКИХ РАДИОЛЮБИТЕЛЕЙ

НОВОСТИ РАДИОЭЛЕКТРОНИКИ



Вы вошли как Гость | Группа "Гости"Приветствую Вас Гость | RSS

Меню сайта
Категории раздела
Мои статьи [956] Книги [0]
Мини-чат
Наш опрос
Оцените мой сайт
1. Отлично
2. Хорошо
3. Неплохо
4. Плохо
5. Ужасно
Всего ответов: 339
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

C Днём Рождения Поздравляем!!!

стрелец(65), vl_vic11(68), Valerchik(48), strelez2(57), UR6LHX(48), rwojw(74), san9(68)
Форма входа


НАШ БАННЕР

ГЛАВНАЯ » Статьи » Мои статьи

Лазер позволил ученым получить сверхпроводник, работающий при комнатной температуре
Однако, существующие сверхпроводящие материалы для того, чтобы обрести свои свойства, должны быть охлаждены до крайне низких температур. Но эксперименты, проведенные учеными в течение этого и прошлого года, привели к получению некоторых неожиданных результатов, которые могут изменить положение, в котором находятся сейчас технологии использования сверхпроводников. Международная группа ученых, возглавляемая учеными из института Структуры и динамики материи Макса Планка (Max Planck Institute for the Structure and Dynamics of Matter), работая с одним из самых перспективных материалов - высокотемпературным сверхпроводником окисью меди-бария-иттрия (YBa2Cu3O6+x, YBCO), обнаружила, что воздействие на этот керамический материал импульсов света инфракрасного лазера заставляет некоторые атомы этого материала кратковременно изменить свое положение в кристаллической решетке, увеличивая проявление эффекта сверхпроводимости. Кристаллы соединения YBCO имеют весьма необычную структуру. Снаружи этих кристаллов присутствует слой окиси меди, покрывающий собой промежуточные слои, в которых содержатся барий, иттрий и кислород. Эффект сверхпроводимости при облучении светом лазера возникает именно в верхних слоях окиси меди, в которых происходит интенсивное формирование пар электронов, так называемых пар Купера. Эти пары могут перемещаться между слоями кристалла за счет эффекта туннелирования, и это указывает на квантовую природу наблюдаемых эффектов. И в обычных условиях кристаллы YBCO становятся сверхпроводниками только при температуре, ниже критической точки этого материала.


Структура кристалла YBCO
В экспериментах, проведенных в 2013 году, ученые обнаружили, что освещение кристалла YBCO импульсами мощного инфракрасного лазера заставляет материал кратковременно становиться сверхпроводником и при комнатной температуре. Очевидно, что лазерный свет оказывает влияние на сцепление между слоями материала, хотя механизм этого влияния остается пока еще не до конца ясным. И для выяснения всех подробностей происходящего ученые обратились к возможностям лазера LCLS, самого мощного на сегодняшний день рентгеновского лазера."Мы начали "бить" по материалу импульсами инфракрасного света, который возбудил некоторые из атомов, заставив их колебаться с достаточно сильной амплитудой" - рассказывает Роман Манковский (Roman Mankowsky), ученый-физик из института Макса Планка, - "Затем мы использовали импульс рентгеновского лазера, следующий сразу за импульсом инфракрасного лазера, для измерения точного значения смещений, произошедших в кристаллической решетке.Полученные результаты показали, что импульс инфракрасного света не только возбудил и заставил колебаться атомы, его воздействие привело к смещению из положения в кристаллической решетке. Это сделало на очень кроткое время меньшим расстояние между слоями оксида меди и другими слоями кристалла, что в свою очередь привело к увеличению проявления эффекта квантового сцепления между ними. В результате этого кристалл становится сверхпроводником при комнатной температуре, правда это его состояние способно держаться всего несколько пикосекунд времени."Полученные нами результаты позволят нам внести некоторые изменения и усовершенствовать существующую теорию высокотемпературных сверхпроводников. Кроме этого, наши данные окажут неоценимую помощь ученым-материаловедам, разрабатывающим новые высокотемпературные сверхпроводящие материалы, имеющие высокое значение критической температуры - рассказывает Роман Манковский, -И, в конечном счете, все это, я надеюсь, приведет к осуществлению мечты о сверхпроводящем материале, работающем при комнатной температуре, который совершенно не нуждается в охлаждении. А появление такого материала, в свою очередь, сможет обеспечить массу прорывов в великом множестве других областей, использующих в своих интересах явление сверхпроводимости.

Категория: Мои статьи | Добавил: Alex (06 Дек 2014)
Просмотров: 410 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ РЕГИСТРАЦИЯ | ВХОД ]
ПОИСК

Архив записей

Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • База знаний uCoz
  • Лучшие сайты рунета
  • Кулинарные рецепты

  • Рейтинг@Mail.ru

    Яндекс цитирования.