Подскажите схему(простейшую) с общими сетками оконечного каскада на лампе ГУ-81 с напряжениями анода накала как изготовить дроссель анода и накалаа также коммутация (прием передача)
Об индуктивности. Во многих конструкциях КВ РА указывают индуктивность всего 100 ...150 мкГн. А это странно. Вдумаемся: выходное сопротивление Ra лампы обычно лежит в пределах 1 ... 2 кОм. Значит, по всем канонам радиотехники, дроссель, отсекающий такое сопротивление по ВЧ, обязан иметь реактивное сопротивление как минимум в 4 (а вообще-то лучше в 10) раза более высокое на низшей рабочей частоте. Т.е. jX = 4 ... 8 кОм минимум. На 1,8 МГц это составляет 400 ... 800 мкГн . Нестыковка...
Дело в том, что в таком варианте дроссель вынужден работать не на чисто активное сопротивление Ra. Из-за низкой индуктивности, он требует емкостной составляющей в нагрузке. И получает ее: ведь кроме анода, к дросселю по ВЧ еще подключен первый конденсатор П-контура. Его подстройкой можно обеспечить требуемую емкостную составляющую. Иначе говоря, дроссель с малой индуктивностью вместе с частью конденсатора П-контура образует параллельный колебательный контур (т.е. фильтр-пробку). В результате чего анод видит очень высокий активный импеданс, не шунтирующий лампу и всё нормально работает.
Чем оплачивается удовольствие иметь малую индуктивность дросселя? Тремя малоприятными вещами:
1.
Ростом емкости анодного конденсатора. КПЕ обязан отдать часть своей емкости на компенсацию малой индуктивности дросселя. Пример. Пусть мы рассчитали, что первый конденсатор П-контура должен быть 300 пФ на 1,8 МГц. А анодный дроссель поставили 100 мкГн. Чтобы компенсировать эту индуктивность (т.е. сделать резонансный контур с такой индуктивностью на 1,8 МГц) требуется емкость 75 пФ. Поэтому РА настроится не при расчетной емкости 300 пФ, а лишь при Ca = 300 + 75 = 375 пФ. Т.е. КПЕ на 1,8 МГц обязан иметь солидный запас по емкости, для компенсации дросселя (это обстоятельство, кстати, делает совершенно бессмысленной погоню за точностью расчета этого конденсатора в П-контуре, т.к. даже при больших дросселях прибавка емкости составляет несколько пикофарад минимум). 2.
Повышением требований к конструкции дросселя. Ведь это уже не совсем дроссель, а катушка индуктивности резонирующего фильтра-пробки. С напряжением проблем не возникнет. Дроссель в любом случае обязан выдерживать ВЧ с амплитудой, равной анодному напряжению. А вот с реактивными током и мощностью все не так гладко. Посчитаем. Для примера возьмем тот же РА, что и предыдущем пункте, при напряжении на аноде Ea = 2,2 кВ. Тогда в фильтре пробке, состоящем из дросселя 100 мкГн и 75 пФ (части анодного КПЕ) будет протекать реактивный ток Iр = (Ea * 0,9)/2*p*F*L ≈ 1,8 A (на такой ток должен быть рассчитан провод дросселя). А реактивная мощность в дросселе достигнет Pр = (Ea * 0,9)* I р /2 ≈ 2000 ВАр (Вольт-Ампер-реактивных). Это весьма высокая цифра исключает возможность использования любых каркасов кроме керамических или фторопластовых и любых сердечников в них. 3.
Повышенные наводки. Катушка без сердечника, в которой "плещется" пара реактивных киловатт (это наш дроссель в 100 мкГн на частоте 1,8 МГц, если вы его не узнали в таком описании) имеет соответствующее поле рассеивания и наводки. Конечно, меньшие, чем от основной катушки П-контура, но сравнимые.
Если что-то из этого списка неприемлемо, то выход только один: увеличивать индуктивность дросселя до таких величин, чтобы стал больше дросселем, и меньше катушкой фильтра-пробки. Допустим, мы сделали дроссель 300 мкГн. Тогда при вышеупомянутых условиях реактивный ток падает до 0,6 А, а реактивная мощность до 660 Вар. Это уже значительно более терпимые величины. И провод можно брать из расчета постоянного анодного тока, т.е. более тонкий. Кроме того снижается с 75 пФ до 25 пФ дополнительная емкости анодного КПЕ.
Имеет смысл ограничить максимальный реактивный ток дросселя 1 А. Для нашего примера это соответствует 200 мкГн на 1,8 МГц.
Итак запомним: для работы в ламповом РА на 1,8 МГц анодный дроссель обязан иметь минимум 200 (а лучше 300) мкГн индуктивности. Ее снижение приводит к резкому повышению требований к конструкции. Причем лавинообразно нарастающих: снижение индуктивности повышает ток, поэтому нужен более толстой провод, а это тянет за собой снижение индуктивности и так далее по нарастающей.
Так в чем проблема? Если увеличение индуктивности столь полезно, поднимем ее до нескольких миллигенри и забудем все эти проблемы. Да, эти (перечисленные в этой части статьи) проблемы мы забудем. Но получим другие.
Моделирование дросселя как распределенной структуры . Если мы хотим, чтобы один дроссель работал бы во всех КВ любительских диапазонах, то как показано выше, его индуктивность обязан быть не менее 300 мкГн. А чтобы достичь такой индуктивности при намотке проводом диаметром 0,35 ...0,7 мм (имея в виду постоянны анодный ток 0,5 ... 2 А) и однослойной цилиндрической катушке (ниже мы разберемся, почему не подходят многослойные) при самой оптимальной геометрии последней потребуется не менее 13,6 м проволоки (из ответа сложной математической задачи, о получении максимальной индуктивности при заданной длине провода, решению которой здесь не место).
Мы работаем волнами от 160 до 10 метров. Для них (во всяком случае, для их ВЧ части), проволока 13,6 м никак не может рассматриваться как маленький проводник с одинаковым током по всей длине. Это уже длинная линия, с соответствующими волновыми эффектами. Сворачивание такого провода в катушку принципиально ничего не меняет: катушка, намотанная несколькими метрами провода, на КВ не может рассматриваться как сосредоточенный элемент. Ее надо изучать только как длинную линию, т.е. структуру с распределенными параметрами и синусоидальным распределением тока и напряжения по длине. Этим мы сейчас и займемся.
Возьмем модель дросселя, индуктивностью 270 мкГн (в программе GAL-ANA). Левый его конец посадим на корпус через блокировочный конденсатор (как на источнике высокого напряжения), к правому подключим источник (анод) чтобы видеть входной импеданс.
Достаточно очевидно, что наш дроссель вместе с проводящей землей образует закороченную на дальнем конце (блокировочным конденсатором) длинную линию. Зависимость импеданса от частоты такой короткозамкнутой линии легко представить из общих соображений теории длинных линий:
1. на частотах, где длина линии кратна нечетному числу l/4, будут параллельные резонансы с нулевой реактивностью и очень высоким R;
2. На частотах, где длина линии кратна l/2 , будут последовательные резонансы с нулевой реактивностью и низким R.
3. Между этими резонансами импеданс будет реактивным, и разного знака.
Но это теория. А теперь обсчитаем точно модель, показанную на предыдущем рисунке. Ниже показано изменение входного импеданса в полосе от 4 до 30 МГц. По вертикальной оси отложены омы, по горизонтальной - мегагерцы (к слову: расчет этого графика потребовал более 10-ти часов машинного времени на 4- х гигагерцовом компьютере).
Мы видим ожидаемую картину:
1. Первый l/4 резонанс дросселя находится на частоте 6 МГц. Ниже этой частоты jX дросселя положительно, и он себя ведет почти как обычная катушка. Для компенсации ее влияния первый конденсатор П-контура надо увеличивать.
2. Первый l/2 резонанс попадает на 12,8 МГц. От 6 до 12,8 МГц jX отрицательно, поэтому анод лампы видит не индуктивность, а дополнительную емкость. И первый конденсатор П-контура приходится соответственно уменьшать.
3. Второй четвертьволновый резонанс (электрическая длина дросселя тут составляет 3l/4 ) располагается на 15,1 МГц. От 12,8 до 15,1 МГц анод снова видит индуктивность, и первый конденсатор П-контура надо слегка увеличивать.
4. Волновой резонанс лежит на 20,2 МГц. От 15,1 до 20,2 МГц в П-контур дросселем вносится параллельная емкость, и первый конденсатор П-контура придется делать чуть меньше.
5. Третий l/4 резонанс на 21,6 МГц. От 20,2 д0 21,6 МГц в П-контур дросселем вносится дополнительная индуктивность, для компенсации чего конденсатор П-контура получится чуть больше расчетного.
6. 3l/2 резонанс затаился на 26,8 МГц. П-контур "видит" дополнительную емкость, и первый конденсатор П-контура надо делать чуть меньше
7. 7l/ 4 параллельный резонанс расположился на 27,8 МГц. jX индуктивное, конденсатор П-контура надо увеличивать.
8. Выше 7l/4 резонанса от 27,8 до 30 МГц jX < 0, вносится емкость, что требует небольшого уменьшения конденсатора П-контура.
Отмечу, что в отличие от прямого провода из-за разного влияния индуктивности на разных частотах, резонансы дросселя получаются не на кратных частотах.
О нерабочих участках. Дроссель нам понадобился, чтобы отсечь по ВЧ анод лампы от источника питания. Как было показано в первой части статьи, желательно, чтобы реактивный ток в дросселе не превысил бы 1 А (и соответственно, реактивная мощность в кВар половины величины анодного напряжения в вольтах). Для этого надо, чтобы модуль комплексного входного сопротивления дросселя (векторная сумма jX и R) был бы не меньше, чем Ea * 0,9. Для нашего примера модуль должен превышать 2000 Ом.
Растянем предыдущие графики по вертикальной оси до этого масштаба. Оттенками красного на них выделены нерабочие частотные области. В зависимости от того, что мы считаем критерием "нерабочести".
1. Прозрачными оставлены безопасные области. В них ни при каких условиях реактивный ток и мощность не превысят указанные выше пределы.
2. Светло-розовым выделены области, где где модуль Z снижается < 2000 Ом. Эти области лучше обходить стороной, но если жизнь вынуждает, слегка, недалеко от границы, войти в них можно. Так, в нашем примере, диапазоны 18 и 24,9 МГц расположены внутри этих областей и мы вынуждены туда идти.
3. Розовым выделены области, где где модуль Z снижается < 1000 Ом. От этих областей надо держаться подальше. Реактивные ток и мощность в них более чем вдвое превышают вышеуказанные пределы.
4. Красным выделены опасные области последовательных полуволновых резонансов. Попадать туда нельзя: низкий импеданс дросселя на этих частотах шунтирует анод лампы. Усилитель отдает активную мощность не в нагрузку, а в дроссель. С почти гарантированным выгоранием последнего.
Обратите внимание на влияние выходного сопротивления усилителя на ширину нерабочих зон. Ведь границы опасных зон мы устанавливаем, выбирая jX относительно имеющегося Ra. Чем выше это сопротивление, тем шире полосы частот, где дроссель не будет нормально работать. Напротив, если выходное сопротивление низкое (например, дроссель используется на выходе П-контура, при последовательном питании, и отсекает не килоомы, а всего лишь 50 Ом или усилитель транзисторный), то ширина нерабочих зон резко сужается до узких полосок вблизи последовательных резонансов дросселя (границами будут уже не тысячи и сотни реактивных ом, как на предыдущем рисунке, а лишь десятки. ). Более того, низкое (скажем 50 Ом) сопротивление требует значительно меньшей индуктивности дросселя на низшей рабочей частоте. На 1,8 МГц потребуется уже не 200 ... 300, а всего 10 ... 15 мкГн. Соответственно, потребуется на 13,6 м а меньше метра провода. Даже первый безопасный четвертьволновый резонанс вылетает при этом за 60 МГц, поэтому такой дроссель в 50 омной цепи будет отлично работать от 1,8 до 50 МГц без резонансов.
Именно это является причиной того, что для дросселей в низкоомных цепях (в транзисторном усилителе или на выходе лампового РА, при последовательном питании) вышеуказанные проблемы с резонансами дросселей на практике не возникают никогда. Это "родимое пятно" вылезает лишь при высоком сопротивлении, т.е. анодном дросселе РА при параллельном питании...