САЙТ ХАРЬКОВСКИХ РАДИОЛЮБИТЕЛЕЙ

РАДИОЛЮБИТЕЛЬСКИЙ ПОРТАЛ



Вы вошли как Гость | Группа "Гости"Приветствую Вас Гость | RSS

Меню сайта
Мини-чат
Наш опрос
Оцените мой сайт
1. Отлично
2. Хорошо
3. Неплохо
4. Плохо
5. Ужасно
Всего ответов: 338
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

C Днём Рождения Поздравляем!!!

gorlov29(62), Валерий(72), gennady1964(60), UU2JI(73), UT3QT(60), NOMAD(49), UT3QT7705(60), zusanli(67), teratron(60), vlad1387(75), AmBaL34RUS(34), topol(53), pci(66), Slysven(59)
Форма входа


НАШ БАННЕР

ГЛАВНАЯ » 2014 » Октябрь » 9 » Ученые создали самый маленький микрофон, в роли которого выступает единственная молекула
12:57
Ученые создали самый маленький микрофон, в роли которого выступает единственная молекула

Звуковые колебания

Известно, что микрофоны, устройства, превращающие звуковые волны в электрические сигналы, бывают разных типов и разных размеров, начиная от громоздких студийных микрофонов и заканчивая крошечными микрофонами, впаиваемыми на платы мобильных телефонов. Но то, что удалось сделать группе исследователей из Лундского университета, Швеция, по праву можно назвать самым маленьким микрофоном в мире. Ведь в качестве чувствительного элемента этого микрофона выступает одна единственная молекула, которая колеблется под воздействием звуковых волн.
Когда мы говорим о звуке, мы подразумеваем колебания, передающиеся через воздух, через газ другого типа, через воду или через другую среду. Эти колебания воздуха, коснувшиеся барабанных перепонок, заставляют их вибрировать и раздражать окончания слухового нерва, что позволяет нам с вами воспринимать звуки, слышать. В новом молекулярном микрофоне роль барабанной перепонки выполняет одна единственная молекула дибензотерилена (dibenzoterrylene, DBT), колебания которой вызывают изменения в спектре света ее флуоресценции.

Структура молекулярного микрофона

Для того, чтобы заставить молекулу работать в качестве микрофона, научной группе, возглавляемой профессором Юкси Тиэн (Yuxi Tian), пришлось поймать несколько таких молекул в ловушки, находящиеся внутри кристалла антрацена. Звуковые колебания заставляют колебаться кристалл, а молекулы DBT при этом перекатываются внутри полостей ловушек. Такие перемещения молекул влияют на взаимодействие электронных облаков, окружающих молекулы, с электронами кристаллической решетки антрацена и это влияние приводит к спектральным изменениям. Отслеживая эти спектральные изменения света флуоресценции при помощи лазера, к примеру, можно определить частоту и амплитуду звука, воздействующего на этот молекулярный микрофон.
Естественно, что столь миниатюрный акустический датчик вряд ли станет полезен в нашей повседневной жизни. Кроме этого, структура молекулярного микрофона для минимизации тепловых шумов от молекул воздуха должна быть охлаждена до достаточно низкой температуры. Но такой молекулярный микрофон может найти применение в оборудовании для физических лабораторий и там, где исследователи занимаются изучением квантовых эффектов при помощи крошечных колебательных систем, ведь при помощи одной единственной молекулы можно уловить даже самые слабые акустические колебания.

Просмотров: 367 | Добавил: Alex | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ РЕГИСТРАЦИЯ | ВХОД ]
ПОИСК
Календарь
«  Октябрь 2014  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
2728293031

Архив записей

Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • База знаний uCoz
  • Лучшие сайты рунета
  • Кулинарные рецепты

  • Рейтинг@Mail.ru

    Яндекс цитирования.